5. Nuclear physics

5.1 The nuclear model of the atom

Paper 3 and 4

Answer Key

Paper 3

Q1.

Question	Answer	Marks
(a)(i)	(number of neutrons =) 52	A2
	nucleon number – proton number = number of neutrons OR 90 – 38	(C1)
(a)(ii)	38	B1

Q2.

Question	Answer	Marks
(a)(i)	(nucleon number =) 225 (proton number =) 89 (Ac)	B1
(a)(ii)	(number of electrons =) 89	B1

Q3.

Question	Answer	Marks
(a)(i)	9 4 Be	B1
(a)(ii)	neutron(s)	B1

Q4.

Question	Answer	Marks
(a)(i)	53	B1
(a)(ii)	(131 – 53 =) 78	B1

Q5.

Question	Answer	Marks
(a)(i)	neutron	B1
(a)(ii)	electron	B1
(a)(iii)	14	B1

Q6.

Question	Answer	Marks
(a)	line from A to middle box: nucleon number	B1
	line from Z to bottom box: proton number	B1

Q7.

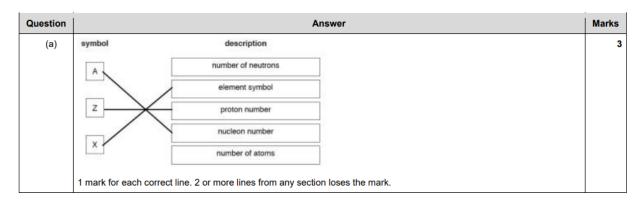
Question	Answer	Marks	
(a)(i)	3 (electrons)	B1	
(a)(ii)	7 (is the nucleon number)	B1	
(a)(iii)	4 (neutrons)	B1	

Q8.

Question	Answer	Marks
(a)(i)	6	B1
(a)(ii)	8	B1
(a)(iii)	6	B1

Q9.

Question	Answer	Marks
(a)	positive	B1
	positive	B1
	negative	B1
(b)(i)	88	B1
(b)(ii)	138	B1
(b)(iii)	²²³ ₈₈ Ra	B1
(c)	3 half lives (until 1.0 mg remains)	C1
	$(3 \times 1600) = 4800 \text{ (years)}$	A1


Q10.

Question	Answer	Marks	Ì
(a)	1.6	B1	ı
	2. 6	B1	ì
	3. 8	B1	ì

Q11.

Question	Answer	Marks
(a)	line from 'nucleus' to 'is the centre of an atom'	B1
	line from 'electrons' to 'orbit around centre of an atom'	B1
	line from 'neutrons' to 'has no electric charge'	B1

Q12.

Paper 4

Q13.

Question	Answer	Marks
(a)	6 electrons AND 6 protons (i.e. 6 × AND 6 ●)	B1
	8 neutrons (i.e. 8 O)	B1
	protons and neutrons in nucleus AND electrons orbiting nucleus	B1
(b)	(carbon) has one more neutron OR nitrogen has one fewer neutron	B1
	(carbon) has one fewer proton / electron OR nitrogen has one more proton / electron	B1

Q14.

Question	Answer	Marks
(a)	(92 is) the proton number / number of protons (in the nucleus) / atomic number	B1
	(235 is) the nucleon number / number of nucleons (in the nucleus) / mass number	B1
(b)(i)	(nuclear) fission	B1
(b)(ii)	nucleus converted to (more stable) nuclei with smaller total mass	B1
	mass (difference) is released / converted as (kinetic) energy (of products) / thermal energy	B1
(c)(i)	any three from: (thermal energy) used to heat / boil (cold) water OR make steam steam is at high pressure steam drives a turbine turbine (connected to and) drives a generator turbine moves a coil in a magnetic field	В3
(c)(ii)	advantage - any one from: (much) small(er) amount of fuel needed (to produce same amount of energy) no greenhouse gases produced OR low carbon dioxide emissions no air pollution (when operating normally)	B1
	disadvantage – any one from danger if any leak of radiation produces hazardous / dangerous / toxic waste OR difficulty of storage of used radioactive material OR nuclear waste must be stored for a long time expensive to build or decommission nuclear power plant or store nuclear waste	B1

Q15.

Question	Answer	Marks
(a)(i)	same number of protons / both have one proton	B1
(a)(ii)	it/hydrogen-3/ (1)H has one more neutron	A2
	different number of neutrons / nucleons	C1

(b)(i)	(high temperature produces) high (kinetic) energy / momentum / speed / ability to do large quantity of work	B1
	they repel each other	B1
	are positively charged / have like charges or need to come close together	B1
(b)(ii)	$_2^4$ X or $_2^4$ He or $_2^4\alpha$	B1
	₀¹n and no other particle	B1

Q16.

Question	Answer	Marks
(a)	(very small) nucleus and surrounded by electrons (in orbit/shells)	B1
	92 protons or 92 electrons or number of protons = number of electrons	B1
	protons and neutrons in nucleus	B1
	143 neutrons	B1
(b)	(uranium-238 has) three more neutrons (in nucleus)	B1
(c)	94 (38)(E)	B1
	(94) 38(E)	B1

Q17.

Question	Answer	Marks
(a)	(very small) nucleus AND (surrounded by) electrons (in orbit / shells)	B1
	neutrons and protons in nucleus	B1
	4 electrons (in atom) OR number of electrons = number of protons	B1
	4 neutrons (in nucleus)	B1

Q18.

Question	Answer	Marks
(a)	² H	B1
	and ³ ₁ H and in this order	
(b)(i)	joining together of (small / H) <u>nuclei</u>	B1
	to produce a bigger nucleus / He nucleus or with the release of energy	B1
(b)(ii)	$\binom{2}{1}H + \frac{3}{1}H \to \binom{1}{0}n$	B1
	(+) ⁴ ₂ ()	B1
	He or α seen	B1
(c)	any two from: geothermal (energy) tidal (energy) nuclear (energy)	B2

Q19.

Question	Answer	Marks
(a)	nuclear fission – nucleus / atom splits (into two) AND nuclear fusion – two nuclei / atoms join together	В1
	One from Inuclear fission –large(r) mass (number) OR heavy nuclei / atoms involved OR neutrons involved / emitted AND nuclear fusion – small(er) mass (number) OR light nuclei / atoms involved OR no neutrons fission in a nuclear reactor AND fusion in Sun / stars fission produces very radioactive / long lasting waste fission makes lighter new elements AND fusion makes heavier new elements fission at normal p / T AND fusion at high p / T fusion produces more energy (than fission)	B1